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Abstract

An artificial viscosity is described, which functions as an effective subgrid-scale model for both high and low Mach

number flows. The model employs a bulk viscosity for treating shocks and a shear viscosity for treating turbulence.

Each of the viscosities contains an empirical constant; however, the constants do not require adjustment from flow

to flow. A polyharmonic operator, applied to the strain rate, imparts spectral-like behavior to the model, thus elimi-

nating the need for ad hoc limiters and/or ‘‘dynamic procedures’’ to turn off the model in smooth regions. The model

gives excellent results for Shu�s problem, Noh�s problem and decaying turbulence.

� 2004 Elsevier Inc. All rights reserved.
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Over half a century ago, von Neumann and Richtmyer [1] introduced the idea of adding artificial viscos-

ity to the Euler equations in order to help stabilize shock calculations. The ideas of von Neumann, regard-

ing artificial viscosity, influenced Smagorinsky in his development of a subgrid-scale model designed to

match the Kolmogorov spectrum for atmospheric turbulence [2,3]. Since that time, numerous artificial vis-

cosity formulations have been proposed for simulating both shocks and turbulence [4–10]. Over the years

however, a rift has developed between shock capturing (monotonicity-preserving) and turbulence-capturing

(large-eddy simulation) methods. Artificial viscosities for shock capturing typically depend on sound speed,

which makes them unsuitable for low Mach number flows. On the other hand, subgrid-scale models, cus-
tomized for incompressible turbulence, usually fail to capture shocks in a monotonic fashion. A unified

treatment of flow discontinuities and turbulent subgrid scales was previously pursued by Adams and

Stolz [11], who employed a regularized approximate deconvolution technique to simulate shocks in one

dimension. The purpose of this paper is to introduce an artificial viscosity suitable for computing
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shock-turbulence interactions. This is accomplished by extending the model of Cook and Cabot [10] to mul-

tiple dimensions.

The Navier–Stokes equations for compressible flow of an ideal gas, with constant specific heats, are

(underline denotes tensor):
_qþr � qu ¼ 0; ð1Þ

_mþr � ðquuþ pd� sÞ ¼ 0; ð2Þ

_E þr � Euþ ðpd� sÞ � uþ q½ � ¼ 0; ð3Þ

p ¼ ðc� 1Þqe; ð4Þ

where q is density, u is velocity, m = qu is momentum, p is pressure, d is the unit tensor, E = q(e + u Æ u/2) is
total energy, e is specific internal energy and c = cp/cv is the ratio of specific heats. The viscous stress tensor,

s, is given by
s ¼ lð2SÞ þ ðb� 2
3
lÞðr � uÞd; ð5Þ
where l is dynamic (shear) viscosity, b is bulk viscosity and S is the symmetric strain rate tensor
S ¼ 1
2
ðruþ urÞ; ð6Þ
where u$ denotes the transpose of $u. The conductive heat flux vector, q, is given by Fourier�s law,
q ¼ �rrT ; ð7Þ

where r is thermal conductivity and T = (c � 1)e/R is temperature (with R = cp � cv being the gas constant).

At high Mach numbers and high Reynolds numbers, the Navier–Stokes equations admit scales of motion

too small to practically resolve on numerical grids. A key problem in simulating such flows is how to prop-

erly remove energy above the Nyquist wavenumber without corrupting the remaining flow. We will dem-

onstrate how an artificial viscosity with spectral-like behavior can accomplish this objective.

Our approach is to add grid-dependent components to the viscosity coefficients, i.e., l = lf + lD and

b = bf + bD are used in (5), where the f subscript denotes physical viscosity and the D subscript denotes arti-

ficial viscosity. The grid-dependent shear and bulk viscosities can be considered subgrid-scale model
coefficients for the convective portions of the filtered momentum and energy equations. Due to the neces-

sarily-limited scope of this Short Note, additional subgrid-scale terms in the filtered energy equation are

neglected, e.g., pressure-dilatation. Also, potential benefits of including subgrid-scale heat transport via

a grid-dependent thermal conductivity (rD) are not considered here.

Spectral-like models for lD and bD are
lD ¼ Cr
lgr; bD ¼ Cr

bgr; gr ¼ qDðrþ2ÞjrrSj; r ¼ 2; 4; 6; . . . ; ð8Þ
where Cr
l and Cr

b are user-specified constants, D is local grid spacing (cube-root of cell volume) and

S = (S:S)1/2 is the magnitude of the strain rate tensor. The polyharmonic operator, $rS, denotes a series

of Laplacians, e.g., r = 4 corresponds to the biharmonic operator, $4S = $2($2S). The overbar ðf Þ denotes
a truncated-Gaussian filter, defined as
f ðxÞ ¼
Z L

�L
Gðjx� nj; LÞf ðnÞ d3n; ð9Þ
where
Gðf; LÞ ¼ e�6f2=L2R L
e�6f2=L2 df

; L ¼ 4D: ð10Þ

�L
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This filter eliminates cusps introduced by the absolute value operator, which in turn, ensures that the visc-

osities are positive definite. In the present work, (9) is approximated along each grid line as
f j ¼
3565

10; 368
fj þ

3091

12; 960
ðfj�1 þ fjþ1Þ þ

1997

25; 920
ðfj�2 þ fjþ2Þ þ

149

12; 960
ðfj�3 þ fjþ3Þ

þ 107

103; 680
ðfj�4 þ fjþ4Þ: ð11Þ
The transfer function associated with this filter stencil closely matches a Gaussian. In practice, the model

does not appear sensitive to the particular integration rule chosen for (9).

Eq. (8) corresponds to Smagorinsky�s model if r ¼ Cr
b ¼ 0 and L ! 0 in the limit. Inclusion of the bulk

viscosity term is the key to capturing shocks without destroying vorticity, i.e., bD can be made large (to

smooth shocks) without impacting small-scale turbulence in regions where $ Æ u � 0. Additionally, by

setting r > 0, the viscosity keys directly on the ringing, rather than indirectly on gradients. This eliminates
the need for limiters and switches to turn off bD in special cases, e.g., expansion, isentropic compression, rigid

rotation, etc. It also removes the need for a ‘‘dynamic procedure’’ [12] to turn off lD in regions of uniform

shear. The polyharmonic operator has some theoretical justification in that it imparts a high-wavenumber

bias to the artificial viscosity, thus approximating the cusp in the Heisenberg–Kraichnan spectral viscosity

[13,14] for isotropic turbulence. Cook and Cabot [10] have demonstrated, for smooth flow in one dimension,

that higher convergence rates can be achieved by increasing r. However, larger values of r require

higher-order approximations for the derivatives. Anticipating implementation of the model on nonuniform

grids, where only a single Laplacian is feasible, we chose r = 2 for the current simulations and set C2
l ¼ 0:025

and C2
b ¼ 5. Recommended values for the empirical coefficients with r = 4 are C4

l ¼ 0:002 and

C4
b ¼ 1. These values were chosen based on fits to a wide variety of shock and turbulence test problems.

A potential concern for hyperviscosity models such as (8) is that they change the type of the underlying

partial differential equation (PDE), since (8) constitutes a higher-order perturbation [11]. Accordingly, for

initial-boundary value problems, boundary data imposed for the unperturbed PDEs may lead to an ill-

posed problem. In this Short Note, we consider only problems with constant or periodic boundaries.

For periodic problems, Cook and Cabot [10] have demonstrated that solutions to the modified PDEs

converge to the correct weak solutions.
In evaluating the model, it is desirable to use a numerical scheme with low truncation error and minimal

implicit dissipation, which would otherwise compete with s. Therefore, we use Fourier transforms to com-

pute spatially-periodic derivatives, a tenth-order compact scheme [15] for nonperiodic derivatives, and a

fourth-order Runge–Kutta (RK4) scheme (with CFL = 1) for temporal integration. De-aliasing is accom-

plished by applying either a 2/3-wavenumber truncation (periodic directions) or eighth-order compact filter

(non-periodic directions) to the conserved variables after each RK4 substep. The compact filter stencil is
bf̂ j�2 þ af̂ j�1 þ f̂ j þ af̂ jþ1 þ bf̂ jþ2 ¼ af j þ
b
2
ðfj�1 þ fjþ1Þ þ

c
2
ðfj�2 þ fjþ2Þ þ

d
2
ðfj�3 þ fjþ3Þ

þ e
2
ðfj�4 þ fjþ4Þ; ð12Þ
where f̂ is the filtered variable and
a ¼ 0:66624; b ¼ 0:16688; a ¼ 0:99965;
b
2
¼ 0:66652; ð13Þ

c
2
¼ 0:16674;

d
2
¼ 4� 10�5;

e
2
¼ �5� 10�6: ð14Þ
The transfer function of this filter provides a fairly sharp high-wavenumber cut-off. Further details of the

numerical scheme are provided in Cook and Cabot [10]. The spectral/compact filtering not only provides
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space for higher wavenumbers (generated by nonlinear terms) to temporarily exist, it also prevents lD and

bD from becoming too large. For example, without the spectral/compact filter, bD can become extremely

large in the vicinity of strong shocks, thus driving the viscously-stable timestep to zero and bringing the

simulation to a halt. The de-aliasing filter constitutes an additional kinetic-energy sink; however, if the filter

is spectrally sharp, e.g., Fourier truncation, then the rate of energy removal will not depend on the fre-
quency of filtering, i.e., filtering a signal a second time leaves the solution unchanged. The simulations

reported here were all performed on uniform Cartesian grids, where Dx = Dy = Dz = D. Except where oth-
erwise noted, lf, bf and r were all set to zero in each test problem.

The first test case is the Shu–Osher problem, a canonical model of a one-dimensional shock-turbulence

interaction [16]. The initial conditions are: q = 3.857143, p = 10.33333 and u = 2.629369 for x < �4, and

q = 1 + 0.2sin(5x), p = 1 and u = 0 for x P �4, with c = 1.4. As the shock propagates into the sinusoidal

density field, it leaves a steeply-oscillating flow in the post-shock region. Fig. 1 displays results of the hyper-

viscosity model for comparison with the results of Adams and Stolz [11]. The slight mismatch near x = �3
is a startup error. The model removes nonphysical oscillations surrounding the shock without attenuating

physical oscillations in the shock�s wake.
The second test case is the spherical Noh implosion [17]. The initial conditions are: q = 1, p = 0 and

u = unit vector directed toward origin, with c = 5/3. In this problem, an infinite-strength shock expands out-

ward from the origin at a constant velocity of 1/3. The objective here is to test the ability of a scheme to

preserve spherical symmetry and produce the correct entropy jump for adiabatic shock compression. In

some sense, this problem represents a worst-case scenario for artificial viscosity methods, since any addi-

tional heating from the dissipation function results in reduced compression. In Fig. 2, density is plotted ver-
sus radius at two different angles to the grid. The drop-off at small radius is the well-known ‘‘wall heating’’

problem [18], which arises from the singularity in the initial velocity field. Without the hyperviscosity

model, the simulation becomes numerically unstable and fails to complete. As indicated by the coincidence

of the on-axis and off-axis density curves, the model is insensitive to grid orientation, i.e., it maintains

spherical symmetry, albeit with a slight discrepancy close to the origin. Regarding the entropy jump, the
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Fig. 1. Density field for the Shu–Osher problem at t = 1.8. The solid curve is the converged solution and the dashed curve is the

solution with the hyperviscosity model at a resolution of 200 grid points (D = 0.05).
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Fig. 2. Density versus radius for Noh�s problem at t = 0.6. The dotted line is along the z-axis (h = / = 0) and the dashed line is diagonal

to the grid (h = / = 45�). The simulation was conducted on an octant of a sphere with D = 10�3.
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simulated shock does not quite produce the theoretical post-shock density of q = 64, due to viscous heating.

The increased temperature, and hence sound speed, in the compressed region cause the simulated shock to

run slightly ahead of the theoretical prediction. The compression ratio is resolution dependent; e.g., for
D = 5 · 10�3 and D = 10�3 the post-shock density is 55.2 and 61.5, respectively. Therefore, the artificial bulk

viscosity method is applicable to very strong shocks, provided sufficient resolution is allocated to the

problem.

The third and final test case is the decaying turbulence experiment of Kang et al. [19]. In their experi-

ment, air is blown past an active grid in the Corrsin wind tunnel [20,21], generating near-isotropic turbu-

lence at a Taylor microscale Reynolds number of about 720. An array of four X-wire probes is used to

measure velocity at downstream stations: x/M = 20, 30, 40 and 48, where M = 0.152 m is the shaft spacing

of the active grid. The initial conditions for the simulation consist of a triply-periodic velocity field in a 1923

box, with a kinetic energy spectrum matched to the first 64 wavenumbers of the experimental spectrum at

x/M = 20. Wavenumbers above 64 are truncated in our simulation in order to match the resolution of the

simulations in Kang et al. [19]. Pressure is obtained by solving a Poisson equation with $ Æ u = 0. Kinematic

viscosity is set to mf = lf/qair = 0.15 cm2/s. Simulation time is related to distance downstream using the mean

flow velocity, i.e., x = Ut, where U = 11.2 m/s. Fig. 3 depicts the evolution of the 3-D kinetic energy spec-

trum, E(k), as well as the decay of turbulent kinetic energy, KE, for the experiment and simulations. The

results indicate that the hyperviscosity model provides the correct rate of subgrid-scale energy transfer,

resulting in a robust Kolmogorov (k�5/3) spectrum and correct rate of energy decay. With no subgrid-scale
model, the spectral energy flux is corrupted, as evidenced by the anomalous curvature of the spectrum and

too-slow decay of turbulent kinetic energy. It is worth mentioning that Dantinne et al. [8] found qualita-

tively-similar results using alternative hyperviscosity models in large-eddy simulations of the Comte–Bellot

Corrsin experiment.

In summary, we have proposed an artificial bulk viscosity for treating shocks, and an artificial shear vis-

cosity for modeling subgrid-scale turbulence. By adjusting the order of the polyharmonic operator, the

viscosities can be strongly weighted toward high wavenumbers, thus imparting spectral-like behavior to



Fig. 3. Evolution of 3D energy spectrum, E(k), for high Reynolds number wind tunnel experiment of Kang et al. [19]. The inset in the

first plot shows decay of turbulent kinetic energy (KE). The vertical lines correspond to the 2/3-wavenumber truncation, which serves

to de-alias the numerical simulation.
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the dissipation. The model is inexpensive and straightforward to implement, and should provide useful

means for simulating shock-turbulence interactions.
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